Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fission gas release from irradiated mixed-oxide fuel pellet during simulated reactivity-initiated accident conditions; Results of BZ-3 and BZ-4 tests

Kakiuchi, Kazuo; Udagawa, Yutaka; Amaya, Masaki

Annals of Nuclear Energy, 155, p.108171_1 - 108171_11, 2021/06

 Times Cited Count:1 Percentile:15.7(Nuclear Science & Technology)

Journal Articles

Fission gas release in irradiated UO$$_{2}$$ fuel at burnup of 45 GWd/t during simulated Reactivity Initiated Accident (RIA) condition

Amaya, Masaki; Sugiyama, Tomoyuki; Fuketa, Toyoshi

Journal of Nuclear Science and Technology, 41(10), p.966 - 972, 2004/10

 Times Cited Count:7 Percentile:45.06(Nuclear Science & Technology)

Pulse irradiation simulating RIA condition was carried out for test rod prepared from fuel irradiated in a commercial reactor. After the pulse irradiation, optical microscopy (OM) and scanning electron microscopy (SEM) observations and electron probe micro analysis (EPMA) were conducted for the test rod as a part of destructive tests. Fission gas release behavior during pulse irradiation was investigated by EPMA and puncture test. Xeon depression was observed in the fuel pellet after pulse irradiation at periphery and center region. It is considered that fission gas was mainly released from the pellet center region during pulse irradiation. The amount of xenon release during pulse irradiation was estimated to be 10-12% from the EPMA results and this estimated value was comparable with the puncture test result. Comparing the estimated value with other results of out-of-pile annealing tests, it was concluded that most fission gas, which was accumulated at grain boundary during base irradiation, was released from the center region of test fuel pellet during pulse irradiation.

Journal Articles

Fission gas release behavior of high burnup UO$$_{2}$$ fuel under reactivity initiated accident conditions

Sasajima, Hideo; Nakamura, Jinichi; Fuketa, Toyoshi; Uetsuka, Hiroshi

Journal of Nuclear Science and Technology, 36(11), p.1101 - 1104, 1999/11

 Times Cited Count:2 Percentile:21.18(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Development of post-irradiation examination techniques at the reactor fuel examination facility

Yamahara, Takeshi; Nishino, Yasuharu; Amano, Hidetoshi;

IAEA-TECDOC-822, 0, p.43 - 54, 1995/09

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1